The Selfish Object

Kevlin Henney

kevlin@curbralan.com




Agenda

Intent

Present a design style that addresses dependencies
in a cohesive, open and manageable fashion

Content
Key concept
Dependencies and pluggability
Control and flow
Partitioning

Summary

ACCU Conference 2008 2




Key Concept

Intent

Describe the essence and implications of the selfish
object style of design

Content
Selfish objects
Architectural consequences
Common versus selfish approaches

ACCU Conference 2008 3




Selfish Objects

» Instead of focusing on what an object can use
or even be given, focus on what it wants
* In essence, express external dependencies by
defining specific, narrow, plug-in-style interfaces
o This style is in contrast to common approach of
abstracting interfaces from implementations

» Although better than not abstracting interfaces at
all, such an approach often ends up presenting a
broad and unfocused facade rather than a specific
and focused usage interface

ACCU Conference 2008

4




Architectural Consequences

» In the large, object self-centredness leads to a
highly localised, open and testable architecture

» Consistent parameterization from above, across
packages and layers as well as objects, results in a
more inverted layering, keeping the core domain
model separated from the plumbing

o Locality and loose coupling are important
considerations in architecture

* Respecting them can simplity comprehensibility,
extensibility, changeability, testability, etc.

ACCU Conference 2008




Common versus Selfish Approaches

The common approach to layering can The selfish approach makes the core
result in the core concepts of an concepts dictate what they need from
application depending, ultimately, on other parts of the system.

the I/O (streams, Ul, database, etc.).

ACCU Conference 2008




Dependencies and Pluggability

Intent

Introduce dependency management techniques that
promote loose coupling and pluggability

Content
Dependency management
Singletons and other globals
Parameterize from Above
Dependency Inversion

Inversion Layer

ACCU Conference 2008 7




Dependency Management Problems

* You have a dependency management problem

it you find that...

* You cannot unit test your application's core without
connecting to a database or touching external contig

» A single class hierarchy dominates your code and
becomes the focus (and pit) for all changes

* You have Singletons all over your code, ostensibly
introduced for expediency and to simplify code

* You have cycles between packages or headers, or
you are unsure what a cyclic dependency is

ACCU Conference 2008 8




Dependency Management

» The dependency horizon should be kept close

* A component's total dependency set is formed by
following the dependencies from the component
until they either run out or hit the 'system' libraries

¢» This limit or boundary is the dependency horizon

» Interfaces, formal or otherwise, often play a
key role in loosening a system's coupling

* Interfaces may be expressed using a variety of
mechanisms, depending on the technology

ACCU Conference 2008




Singletons and Other Globals

» Singleton is a common source of dependency-
related problems

+ It is normally used by coincidence, it introduces a
centralised point of coupling, it complicates testing,
and it comes with various lifecycle-related problems

» Consider avoiding modifiable static data —
and even reducing use of immutable static data

¢+ This moratorium on static includes the Monostate
pattern, which is also known as the Borg pattern...
which tells you everything you need to know

ACCU Conference 2008

10




Hardwired versus Pluggable

» Pluggability describes a design property that is
the opposite ot hardwired

* Hardwiring attempts to nail an assumption in place,
which is a problem if the assumption represents a
variable or critical dependency

» Pluggable designs are more testable and

adaptable than hardwired designs

* They also emphasise locality in a design by more
explicitly dividing concerns between the pluggable
and the kernel elements of a design

ACCU Conference 2008 11




Parameterize from Above

» Pass in config parameters rather than having
them global (e.g., Singleton) or pulled in

¢ Communicate through constructor arguments,
method arguments or generic parameters, as
appropriate
* Decentralise configuration constants
» Callout interfaces define the configurable
dependencies of each part

* E.g., the Context Object, Plug-In and Strategy
design patterns or the Test Double testing pattern

ACCU Conference 2008




Inversion of Dependencies

» Dependency Inversion is a technique for
rearranging (reversing) dependencies in code

* Normally based on introducing an interface of some
kind that plays the role of a plug-in point

* Inverting dependencies can be used to break cyclic
dependencies between packages by containing the
cycle within a package

* Inversion of dependencies often leads to inversion
of control, i.e., plug-ins lead to callbacks and the
dependency horizon becomes an event horizon

ACCU Conference 2008




Dependency Inversion in Practice

Dependency Inversion allows a
design's dependencies to be reversed,
loosened and manipulated at will.

ACCU Conference 2008 14




Transitive Dependencies

o Some partitions appear encapsulated, but
hidden dependencies still create coupling

* Traditional layering partitions and groups
immediate concerns well enough, but it does not
tully separate them — the transitive dependencies
can make for a distant dependency horizon

)

ACCU Conference 2008

15




Inverted Layering

o It is possible to invert dependencies in classic
layered architectures

* An Inversion Layer introduces a separation
between concepts and mechanisms

» Simplifies testing and parallel development

I

ACCU Conference 2008




Inversion Layers

» In practice, an Inversion Layer is often also an
adaptation or bridging layer
» The core owns the interfaces (‘outerfaces') it uses

» The boundary code wraps and encapsulates
external dependencies

* The code in between, which bridges boundary and
core, is normally based on adaptors

o Amount of executable code is often conserved
* It is the partitioning of the code that has changed

ACCU Conference 2008




Control and Flow

Intent

Focus on control flow model and location of active
control in a design

Content
Inversion of control
Dependency Injection
Callback mechanisms
Micro-Kernel
Interceptor

ACCU Conference 2008 18




Inversion of Control

o A description of the control flow relationship
between one component and another

* A lower-level component calls out to a higher-level
component, rather than the higher-level component
calling the lower-level one

» Often a result of dependency inversion

» Inversion of control is based on the Hollywood
principle: "Don't call us, we'll call you"

¢ Common in framework designs that use a push
rather than a pull approach to event handling

ACCU Conference 2008

19




Applications of Inversion of Control

» Inversion of control makes for a more event-
driven programming style
» Aligns control flow with event flow
* Aligns event horizon with dependency horizon
o [tis found in many common patterns
* Observer propagates event notification
* Enumeration Method is used for iteration

¢ Lifecycle Callback maps lifecycle events to callbacks
* Visitor complements class hierarchy behaviour

ACCU Conference 2008 20




Dependency Injection

» Principle of separating configuration from use
and injecting the configuration dependencies

» Used in lightweight component container models

» Although it uses inversion of control, Dependency
Injection it is not a synonym — inversion of control
is a broader concept, and the key to Dependency
Injection is the inversion of dependencies

* An assembler role is responsible for configuring
objects, whether through constructor arguments or
'injecting' methods

ACCU Conference 2008




Callback Mechanisms

» Callback mechanisms depend on the language
and the desired

» A method selector, such as a delegate or function
pointer, allows plugging in of a single method

¢* Interfaces — as in the inferface construct — supports
a broader interface in statically typed languages

* A dynamically typed protocol may be a more
normal approach for a language, or it may be
possible through reflection

* Templates and other generic forms are also usable

ACCU Conference 2008 22




Micro- (and Nano-) Kernels

» A Micro-Kernel approach partitions control
logic, not just concepts

* Common logic and concepts are extracted into the
kernel (or engine) and details are relocated within
plug-ins

* A Nano-Kernel is a more minimal and localised
application of the same idea

» The kernel works in terms of out-bound

callback interfaces on plug-ins
* The domain model itself may well be a plug-in

ACCU Conference 2008




Anatomy of a Plug-In Architecture

Feature Observers and
Realisation Interceptors

Execution Exception
Policies Handling

ACCU Conference 2008




Interception

» How can a design be cleanly extended to
accommodate extra-functional features?

* Modifications ot behaviour, such as filtering, or
addition of features, such as logging

o Favour an Interceptor-based approach rather
than an adaptation approach

* An Interceptor is more configurable and less

intrusive than many other approaches, such as
Template Method (or NVI), that are hardwired

ACCU Conference 2008




Interceptor

» An object, component or framework's basic
behaviour can be extended

¢ Interception plug-ins are called on certain actions

*

Interceptor

registerPlugin beforeOperation
r mkd operation afterOperation

|

Interceptor1 Interceptor2

beforeOperation beforeOperation
afterOperation afterOperation

ACCU Conference 2008 26




Partitioning

Intent

Describe effective approaches for broader
partitioning of a system's classes and components

Content
Interface separation, role partitioning
Role-based naming
Partitioning by role
Partitioning for stability

ACCU Conference 2008 27




Interface Separation, Role Partitioning

* One of the most common forms of partitioning
is separating interface from implementation

* "Program to an interface, not an implementation"

» Pocus on object roles not object classes

* A role defines a selfish perspective: how an object is
to be used, not what it is or how it is made

* Role-based design tends to give a cleaner separation
of concerns and more focused interfaces

* Class-centric design tends to give coarser-grained,
implementation-focused classes

ACCU Conference 2008 28




Role-Based Naming

» When extracting interfaces, focus on the usage
and not on the implementation

* Otherwise the interface is likely to be broader than
necessary, and with an implementation- based
name (a common problem with [-prefixing)

Client Sy Name based on Client BRSR Name based on
implementation client usage
: |

Implementation- : Role-based :
based naming Implementation naming Implementation
(and thinking) name name

ACCU Conference 2008

29




Partitioning by Role

» Role partitioning applies more broadly than
just interface separation and segregation

» Although this is perhaps one of the most visible
applications of role partitioning
» Packages can be organised with respect to role

* Packages should be cohesive with respect to usage
and purpose

* Packages should not be partitioned with respect to
coincidental criteria, such all classes in a package
being exceptions or value objects

ACCU Conference 2008 30




Partitioning for Stability

» Different parts of a system are subject to
different rates of development change

* Layering should respect such change, so that less
stable elements depend on more stable elements,
and not vice versa

¢ Stability can be tracked over a code base's lifetime,
and the code can refactored accordingly

* Dependency Inversion is a useful technique for
rearranging dependencies along the lines of
stability, such as introducing Inversion Layers

ACCU Conference 2008




Summary

» A selfish object approach separates and
localises concepts and dependencies

» Simplifies modification, extension, and incremental
development and testing

» In the large, the approach leads to inversion
layers and an architecture with high locality

* An onion-layered view centred on the domain
model, rather than a stack-layered view, is often a
more appropriate visualisation

ACCU Conference 2008

32




